手机浏览器扫描二维码访问
第二十四章首日竞赛
2009年,适逢国际数学奥林匹克IMO举办50届,国际数学奥林匹克委员会举行了50周年庆典活动。
在这场50周年庆典,出现了很多闻名世界的数学家。
庆典结束后,则是正式比赛,来自全球105个国家和地区的近560名学生将参加本届比赛。
整个比赛持续一周时间。
比赛选手将在这为期一周的时间内攻克数学难题,争夺数学奥林匹克的金银铜牌。
每个国家的参赛选手,都抱着为国争光的决心前来征战世界。
3月15日,竞赛拉开帷幕
IMO一共六道题,今天考三题,明天考三题,每题7分,满分是42分。
每个竞赛日的竞赛时间为4.5个小时,可携带任何文具及作图工具,一切电子设备不被允许带入赛场。
因为竞赛时间较长,各选手可自带食物饮料进场,可并携带不多于三本的参考资料。
但是秦元清除了带了一些吃喝的,其他参考资料一本没带,因为按照以前的情况,参考资料基本上没有什么用的,出题人早已考虑到这些,要是参考资料能够找到解决办法,说明出题人的出题水平太烂了。
这就如同国内考试,开卷考往往比闭卷考难得多。
因为本国选手拿到题目,都已经是换成本国文字,所以选手拿到试卷,都不会存在任何语言文字的障碍。
秦元清拿到试卷,只有三题,第一题是最简单的,要是连第一题都不会做,那么后面两题都不用考虑了。
秦元清很冷静,第一道题最简单,是送分题,可是同样的,一不小心就变成了送命题。
“1、n是一个正整数,a1,a2.....ak(k≥2)是{1,2,......,n}中的不同整数,并且n|ai(ai+1-1)对于所有i=1,2,.......,k-1都成立,证明:ak(a1-1)不能被n整除。”
秦元清看了三遍题目,心中暗骂一下提供这题的人以后生孩子没屁眼,竟然暗设陷阱,一个不小心就会答错掉。
秦元清开始作答,首先利用数学归纳法证明:对任意的整数i(2≤i≤k),都有被整除,得出当i=2时,由已知得能被乘除的结论成立。
一步步以此展开,最后得出,ak(a1-1)不能被n整除的结论。
然后秦元清又看向第二道题。
“△ABC外接圆的圆心为O,P、Q分别在线段CA、AB上,K、L、M分别是BP、CQ、PQ的中点,圆Г过K、L、M并且与PQ相切。
证明:OP=OQ。”
秦元清这一题审题完成,倒是觉得这一题比上一题容易一些,没有设陷阱。
先是做了一个圆,然后化作△ABC,然后又作出CA、AB线段以及P、Q二点,然后标出BP、CQ、PQ的中点K、L、M。
最后作出圆Г。
随后以直线PQ与圆Г相切,相切点M,然后通过弦切角定理得出∠QMK=∠MLK。
由于点K、M分别是BP、PQ的中点,所以KM∥BQ,从而得出∠QMK=∠AQP。
因此得到∠MLK=∠AQP。
觅人类起源寻超能奥秘穿越时空鏖战异形。人生,取决于处世的态度,我们不得不正视现实的骨感,在幻想中追求理想的丰满。屁屁阳读者群281297110...
明日香,我和真嗣来帮你来了!麻美学姐,小心头!头!好色仙人,纲手婆婆说了,回去就和你结婚。艾斯,路飞,我带着木叶村的两大扛把子回来了!莫名其妙的从女神那里得到一款动漫穿越APP后,李晓开始了自己的拯救之旅。李晓那些个被作者画死的倒霉蛋,来来来,都到我面前排好队,看我挨个复活你们!...
感谢青春,让我在一无所有的年纪,遇到了青春靓丽的你。...
一事无成的秦风重生了,回到了1999年的最后一天。晴天霹雳,裤衩儿一声!一个崭新的未来出现在了眼前,让我们跟随主角,从世纪末出发,重走人生路。...
这里是废墟之地。这里拥有一切,所有你能想象到的,想象不到的,都可以在这里找到。在这里,你随时都有可能会死,战胜这些困难,活下来,这是最终的目的。你好像是佣兵,执行雇主的任务,不同的是,你无权选择拒绝,拒绝即是死亡。你比一般的佣兵更加强大,无畏,也将面对更大的风险。...
本是修仙天才!却被僵尸王所咬!!不死不灭?超脱三界?我居然成了六道之外的特殊存在!拥有金刚不坏之身透视眼超凡医术?可修炼旷古绝今的五行诀?凭借着众多惊世骇俗的绝技,且看我将在这都市掀起怎样的狂风暴雨!...